TAMA-MCP
Gitreceiver/TAMA-MCPUpdated 21 days ago00

Remote#task management#AI-powered#CLI toolLicense: MIT LicenseLanguage: Python

Tama - AI-Powered Task Manager CLI ✨

中文 Tama is a Command-Line Interface (CLI) tool designed for managing tasks, enhanced with AI capabilities for task generation and expansion. It utilizes AI (specifically configured for DeepSeek models via their OpenAI-compatible API) to parse Product Requirements Documents (PRDs) and break down complex tasks into manageable subtasks.

Features

  •   Standard Task Management: Add, list, show details, update status, and remove tasks and subtasks.
  •   AI-Powered PRD Parsing: (tama prd <filepath>) Automatically generate a structured task list from a .txt or .prd file.
  •   AI-Powered Task Expansion: (tama expand <task_id>) Break down a high-level task into detailed subtasks using AI.
  •   Dependency Checking: (tama deps) Detect circular dependencies within your tasks.
  •   Reporting: (tama report [markdown|mermaid]) Generate task reports in Markdown table format or as a Mermaid dependency graph.
  •   Code Stub Generation: (tama gen-file <task_id>) Create placeholder code files based on task details.
  •   Next Task Suggestion: (tama next) Identify the next actionable task based on status and dependencies.
  •   Rich CLI Output: Uses rich for formatted and visually appealing console output (e.g., tables, panels).

Installation & Setup

  1.  Clone the Repository:
git clone https://github.com/Gitreceiver/TAMA-MCP
cd TAMA-MCP
  1.  Create and Activate Virtual Environment(Recommend python 3.12):
uv venv -p 3.12

# Windows
.\.venv\Scripts\activate

# macOS/Linux
source .venv/bin/activate
  1.  Install Dependencies & Project:     (Requires uv - install with pip install uv if you don't have it)     shell     uv pip install .    

(Alternatively, using pip: pip install .)

Configuration ⚙️

Tama requires API keys for its AI features.

  1.  Create a .env file in the project root directory.
  2.  Add your DeepSeek API key:
# .env file
DEEPSEEK_API_KEY="your_deepseek_api_key_here"

(See .env.example for a template)

The application uses settings defined in src/config/settings.py, which loads variables from the .env file.

Usage 🚀

Tama commands are run from your terminal within the activated virtual environment. Core Commands:

  •   List Tasks:
tama list
tama list --status pending --priority high # Filter

tama-list|500

  •   Show Task Details:
tama show 1       # Show task 1
tama show 1.2     # Show subtask 2 of task 1

tama-show|500

  •   Add Task/Subtask:
# Add a top-level task
tama add "Implement user authentication" --desc "Handle login and sessions" --priority high

# Add a subtask to task 1
tama add "Create login API endpoint" --parent 1 --desc "Needs JWT handling"

tama-add-1|500

tama-add-2|500

  •   Set Task Status:
tama status 1 done
tama status 1.2 in-progress

(Valid statuses: pending, in-progress, done, deferred, blocked, review)

tama-status1|500

tama-status2|500

  •   Remove Task/Subtask:
tama remove 2
tama remove 1.3

tama-remove|500

  •   Find Next Task:
tama next

tama-next|500

AI Commands:

  •   Parse PRD: (Input file must be .txt or .prd)
tama prd path/to/your/document.txt

tama-prd|500

  •   Expand Task: (Provide a main task ID)
tama expand 1

tama-expand|500

Utility Commands:

  •   Check Dependencies:
tama deps
  •   Generate Report:
tama report markdown       # Print markdown table to console
tama report mermaid        # Print mermaid graph definition
tama report markdown --output report.md # Save to file
  •   Generate Placeholder File:
tama gen-file 1
tama gen-file 2 --output-dir src/generated

Shell Completion:

  •   Instructions for setting up shell completion can be obtained via:
tama --install-completion

(Note: This might require administrator privileges depending on your shell and OS settings)

Development 🔧

If you modify the source code, remember to reinstall the package to make the changes effective in the CLI:

uv pip install .

MCP Server Usage

Tama can be used as an MCP (Model Context Protocol) server, allowing other applications to interact with it programmatically. To start the server, run:

uv --directory /path/to/your/TAMA_MCP run python -m src.mcp_server

in your mcp client: (cline,cursor,claude)

{
  "mcpServers": {
    "TAMA-MCP-Server": {
        "command": "uv",
        "args": [
            "--directory",
            "/path/to/your/TAMA_MCP",
            "run",
            "python",
            "-m",
            "src.mcp_server"
        ],
        "disabled": false,
        "transportType": "stdio",
        "timeout": 60
    },
  }
}

This will start the Tama MCP server, which provides the following tools

  •   get_task: Finds and returns a task or subtask by its ID.
  •   find_next_task: Finds the next available task to work on.
  •   set_task_status: Sets the status for a task or subtask.
  •   add_task: Adds a new main task.
  •   add_subtask: Adds a new subtask.
  •   remove_subtask: Removes a subtask.
  •   get_tasks_table_report: Generates a Markdown table representing the task structure.

License

MIT License This project is licensed under the MIT License. See the LICENSE file for details.

=======

TAMA-MCP

AI-Powered Task Manager CLI with MCP Server

Installation

Claude
Claude
Cursor
Cursor
Windsurf
Windsurf
Cline
Cline
Witsy
Witsy
Spin AI
Spin AI
Run locally with the following command:
Terminal
Add the following config to your client:
JSON
{
  "mcpServers": {
    "TAMA-MCP-Server": {
      "env": {},
      "args": [
        "--directory",
        "/path/to/your/TAMA_MCP",
        "run",
        "python",
        "-m",
        "src.mcp_server"
      ],
      "command": "uv"
    }
  }
}

MCPLink

Seamless access to top MCP servers powering the future of AI integration.

© 2025 MCPLink. All rights reserved.
discordgithubdiscord