An MCP server implementation that integrates the Tavily Search API, providing optimized search capabilities for LLMs.
query
(string, required): The search query.search_depth
(string, optional): "basic" or "advanced" (default: "basic").topic
(string, optional): "general" or "news" (default: "general").days
(number, optional): Number of days back for news search (default: 3).time_range
(string, optional): Time range filter ("day", "week", "month", "year" or "d", "w", "m", "y").max_results
(number, optional): Maximum number of results (default: 5).include_images
(boolean, optional): Include related images (default: false).include_image_descriptions
(boolean, optional): Include descriptions for images (default: false).include_answer
(boolean, optional): Include a short LLM-generated answer (default: false).include_raw_content
(boolean, optional): Include raw HTML content (default: false).include_domains
(string[], optional): Domains to include.exclude_domains
(string[], optional): Domains to exclude.Clone this repository somewhere on your computer:
git clone https://github.com/apappascs/tavily-search-mcp-server.git
Install dependencies & build the project:
cd tavily-search-mcp-server
npm install
npm run build
Open your Claude Desktop configuration file:
# On Mac:
~/Library/Application\ Support/Claude/claude_desktop_config.json
# On Windows:
%APPDATA%\Claude\claude_desktop_config.json
Add one of the following to the mcpServers
object in your config, depending on whether you want to run the server using npm
or docker
:
Option A: Using NPM (stdio transport)
{
"mcpServers": {
"tavily-search-server": {
"command": "node",
"args": [
"/Users/<username>/<FULL_PATH...>/tavily-search-mcp-server/dist/index.js"
],
"env": {
"TAVILY_API_KEY": "your_api_key_here"
}
}
}
}
Option B: Using NPM (SSE transport)
{
"mcpServers": {
"tavily-search-server": {
"command": "node",
"args": [
"/Users/<username>/<FULL_PATH...>/tavily-search-mcp-server/dist/sse.js"
],
"env": {
"TAVILY_API_KEY": "your_api_key_here"
},
"port": 3001
}
}
}
Option C: Using Docker
{
"mcpServers": {
"tavily-search-server": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"TAVILY_API_KEY",
"-v",
"/Users/<username>/<FULL_PATH...>/tavily-search-mcp-server:/app",
"tavily-search-mcp-server"
],
"env": {
"TAVILY_API_KEY": "your_api_key_here"
}
}
}
}
Important Steps:
/Users/<username>/<FULL_PATH...>/tavily-search-mcp-server
with the actual full path to where you cloned the repository.env
section. It's always better to have secrets like API keys as environment variables./
) in the path, even on Windows.docker build -t tavily-search-mcp-server:latest .
Restart Claude Desktop for the changes to take effect.
To install Tavily Search for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @apappascs/tavily-search-mcp-server --client claude
Copy .env.example
to .env
:
cp .env.example .env
Update the .env
file with your actual Tavily API key:
TAVILY_API_KEY=your_api_key_here
Note: Never commit your actual API key to version control. The .env
file is ignored by git for security reasons.
Start the server using Node.js:
node dist/index.js
For sse transport:
node dist/sse.js
Build the Docker image (if you haven't already):
docker build -t tavily-search-mcp-server:latest .
Run the Docker container with:
For stdio transport:
docker run -it --rm -e TAVILY_API_KEY="your_api_key_here" tavily-search-mcp-server:latest
For sse transport:
docker run -it --rm -p 3001:3001 -e TAVILY_API_KEY="your_api_key_here" -e TRANSPORT="sse" tavily-search-mcp-server:latest
You can also leverage your shell's environment variables directly, which is a more secure practice:
docker run -it --rm -p 3001:3001 -e TAVILY_API_KEY=$TAVILY_API_KEY -e TRANSPORT="sse" tavily-search-mcp-server:latest
Note: The second command demonstrates the recommended approach of using -e TAVILY_API_KEY=$TAVILY_API_KEY
to pass the value of your TAVILY_API_KEY
environment variable into the Docker container. This keeps your API key out of your command history, and it is generally preferred over hardcoding secrets in commands.
Using docker compose
Run:
docker compose up -d
To stop the server:
docker compose down
This MCP server is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License. For more details, please see the LICENSE file in the project repository.
Seamless access to top MCP servers powering the future of AI integration.