A Model Context Protocol (MCP) server that enables Claude Desktop to search your content using Azure AI services. Choose between Azure AI Agent Service (with both document search and web search) or direct Azure AI Search integration.
This project provides two MCP server implementations to connect Claude Desktop with Azure search capabilities:
Azure AI Agent Service Implementation (Recommended) - Uses the powerful Azure AI Agent Service to provide:
Direct Azure AI Search Implementation - Connects directly to Azure AI Search with three methods:
Project Directory:
mkdir mcp-server-azure-ai-search
cd mcp-server-azure-ai-search
Create a .env
File:
echo "PROJECT_CONNECTION_STRING=your-project-connection-string" > .env
echo "MODEL_DEPLOYMENT_NAME=your-model-deployment-name" >> .env
echo "AI_SEARCH_CONNECTION_NAME=your-search-connection-name" >> .env
echo "BING_CONNECTION_NAME=your-bing-connection-name" >> .env
echo "AI_SEARCH_INDEX_NAME=your-index-name" >> .env
Set Up Virtual Environment:
uv venv
.venv\Scripts\activate
uv pip install "mcp[cli]" azure-identity python-dotenv azure-ai-projects
Use the azure_ai_agent_service_server.py
script for integration with Azure AI Agent Service.
Before using the implementation, you need to:
Create an Azure AI Project:
Create an Azure AI Search Connection:
Create a Bing Web Search Connection:
Authenticate with Azure:
az login
{
"mcpServers": {
"azure-ai-agent": {
"command": "C:\\path\\to\\.venv\\Scripts\\python.exe",
"args": ["C:\\path\\to\\azure_ai_agent_service_server.py"],
"env": {
"PROJECT_CONNECTION_STRING": "your-project-connection-string",
"MODEL_DEPLOYMENT_NAME": "your-model-deployment-name",
"AI_SEARCH_CONNECTION_NAME": "your-search-connection-name",
"BING_CONNECTION_NAME": "your-bing-connection-name",
"AI_SEARCH_INDEX_NAME": "your-index-name"
}
}
}
}
Note: Replace path placeholders with your actual project paths.
For those who prefer direct Azure AI Search integration without the Agent Service:
Create a different .env
File:
echo "AZURE_SEARCH_SERVICE_ENDPOINT=https://your-service-name.search.windows.net" > .env
echo "AZURE_SEARCH_INDEX_NAME=your-index-name" >> .env
echo "AZURE_SEARCH_API_KEY=your-api-key" >> .env
Install Dependencies:
uv pip install "mcp[cli]" azure-search-documents==11.5.2 azure-identity python-dotenv
Use the azure_search_server.py
script for direct integration with Azure AI Search.
Configure Claude Desktop:
{
"mcpServers": {
"azure-search": {
"command": "C:\\path\\to\\.venv\\Scripts\\python.exe",
"args": ["C:\\path\\to\\azure_search_server.py"],
"env": {
"AZURE_SEARCH_SERVICE_ENDPOINT": "https://your-service-name.search.windows.net",
"AZURE_SEARCH_INDEX_NAME": "your-index-name",
"AZURE_SEARCH_API_KEY": "your-api-key"
}
}
}
}
Server Not Appearing:
%APPDATA%\Claude\logs\mcp*.log
on Windows)python azure_ai_agent_service_server.py
or uv run python azure_ai_agent_service_server.py
Azure AI Agent Service Issues:
@mcp.tool()
decorator to integrate additional toolsThis project is licensed under the MIT License.
Seamless access to top MCP servers powering the future of AI integration.