An MCP server for fetching and transforming web content into various formats. This server provides comprehensive tools for extracting content from web pages, including support for JavaScript-rendered content and media files.
The server provides four specialized tools:
get-raw-text: Extracts raw text content directly from URLs without browser rendering
url
: URL of the target web page (text, JSON, XML, csv, tsv, etc.) (required)get-rendered-html: Fetches fully rendered HTML content using a headless browser
url
: URL of the target web page (required)get-markdown: Converts web page content to well-formatted Markdown
url
: URL of the target web page (required)get-markdown-from-media: Performs AI-powered content extraction from media files
url
: URL of the target media file (images, videos) (required)To use with Claude Desktop, add the server configuration:
On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
On Windows: %APPDATA%/Claude/claude_desktop_config.json
"mcpServers": {
"mcp-server-fetch-python": {
"command": "uvx",
"args": [
"mcp-server-fetch-python"
]
}
}
The following environment variables can be configured:
get-markdown-from-media
tool. This key is needed for AI-powered image analysis and content extraction."mcpServers": {
"mcp-server-fetch-python": {
"command": "uvx",
"args": [
"mcp-server-fetch-python"
],
"env": {
"OPENAI_API_KEY": "sk-****",
"PYTHONIOENCODING": "utf-8",
"MODEL_NAME": "gpt-4o",
}
}
}
Alternatively, you can install and run the server locally:
git clone https://github.com/tatn/mcp-server-fetch-python.git
cd mcp-server-fetch-python
uv sync
uv build
Then add the following configuration to Claude Desktop config file:
"mcpServers": {
"mcp-server-fetch-python": {
"command": "uv",
"args": [
"--directory",
"path\\to\\mcp-server-fetch-python", # Replace with actual path to the cloned repository
"run",
"mcp-server-fetch-python"
]
}
}
You can start the MCP Inspector using npxwith the following commands:
npx @modelcontextprotocol/inspector uvx mcp-server-fetch-python
npx @modelcontextprotocol/inspector uv --directory path\\to\\mcp-server-fetch-python run mcp-server-fetch-python
{
"mcpServers": {
"mcp-server-fetch-python": {
"env": {},
"args": [
"mcp-server-fetch-python"
],
"command": "uvx"
}
}
}
Seamless access to top MCP servers powering the future of AI integration.