Remote#Apache Airflow#MCP Server#IntegrationLicense: MIT LicenseLanguage: Python

mcp-server-apache-airflow

smithery badge

A Model Context Protocol (MCP) server implementation for Apache Airflow, enabling seamless integration with MCP clients. This project provides a standardized way to interact with Apache Airflow through the Model Context Protocol.

Server for Apache Airflow MCP server

About

This project implements a Model Context Protocol server that wraps Apache Airflow's REST API, allowing MCP clients to interact with Airflow in a standardized way. It uses the official Apache Airflow client library to ensure compatibility and maintainability.

Feature Implementation Status

FeatureAPI PathStatus
DAG Management
List DAGs/api/v1/dags
Get DAG Details/api/v1/dags/{dag_id}
Pause DAG/api/v1/dags/{dag_id}
Unpause DAG/api/v1/dags/{dag_id}
Update DAG/api/v1/dags/{dag_id}
Delete DAG/api/v1/dags/{dag_id}
Get DAG Source/api/v1/dagSources/{file_token}
Patch Multiple DAGs/api/v1/dags
Reparse DAG File/api/v1/dagSources/{file_token}/reparse
DAG Runs
List DAG Runs/api/v1/dags/{dag_id}/dagRuns
Create DAG Run/api/v1/dags/{dag_id}/dagRuns
Get DAG Run Details/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}
Update DAG Run/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}
Delete DAG Run/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}
Get DAG Runs Batch/api/v1/dags/~/dagRuns/list
Clear DAG Run/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/clear
Set DAG Run Note/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/setNote
Get Upstream Dataset Events/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/upstreamDatasetEvents
Tasks
List DAG Tasks/api/v1/dags/{dag_id}/tasks
Get Task Details/api/v1/dags/{dag_id}/tasks/{task_id}
Get Task Instance/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}
List Task Instances/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances
Update Task Instance/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}
Clear Task Instances/api/v1/dags/{dag_id}/clearTaskInstances
Set Task Instances State/api/v1/dags/{dag_id}/updateTaskInstancesState
Variables
List Variables/api/v1/variables
Create Variable/api/v1/variables
Get Variable/api/v1/variables/{variable_key}
Update Variable/api/v1/variables/{variable_key}
Delete Variable/api/v1/variables/{variable_key}
Connections
List Connections/api/v1/connections
Create Connection/api/v1/connections
Get Connection/api/v1/connections/{connection_id}
Update Connection/api/v1/connections/{connection_id}
Delete Connection/api/v1/connections/{connection_id}
Test Connection/api/v1/connections/test
Pools
List Pools/api/v1/pools
Create Pool/api/v1/pools
Get Pool/api/v1/pools/{pool_name}
Update Pool/api/v1/pools/{pool_name}
Delete Pool/api/v1/pools/{pool_name}
XComs
List XComs/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}/xcomEntries
Get XCom Entry/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}/xcomEntries/{xcom_key}
Datasets
List Datasets/api/v1/datasets
Get Dataset/api/v1/datasets/{uri}
Get Dataset Events/api/v1/datasetEvents
Create Dataset Event/api/v1/datasetEvents
Get DAG Dataset Queued Event/api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents/{uri}
Get DAG Dataset Queued Events/api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents
Delete DAG Dataset Queued Event/api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents/{uri}
Delete DAG Dataset Queued Events/api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents
Get Dataset Queued Events/api/v1/datasets/{uri}/dagRuns/queued/datasetEvents
Delete Dataset Queued Events/api/v1/datasets/{uri}/dagRuns/queued/datasetEvents
Monitoring
Get Health/api/v1/health
DAG Stats
Get DAG Stats/api/v1/dags/statistics
Config
Get Config/api/v1/config
Plugins
Get Plugins/api/v1/plugins
Providers
List Providers/api/v1/providers
Event Logs
List Event Logs/api/v1/eventLogs
Get Event Log/api/v1/eventLogs/{event_log_id}
System
Get Import Errors/api/v1/importErrors
Get Import Error Details/api/v1/importErrors/{import_error_id}
Get Health Status/api/v1/health
Get Version/api/v1/version

Setup

Dependencies

This project depends on the official Apache Airflow client library (apache-airflow-client). It will be automatically installed when you install this package.

Environment Variables

Set the following environment variables:

AIRFLOW_HOST=<your-airflow-host>
AIRFLOW_USERNAME=<your-airflow-username>
AIRFLOW_PASSWORD=<your-airflow-password>

Usage with Claude Desktop

Add to your claude_desktop_config.json:

{
  "mcpServers": {
    "mcp-server-apache-airflow": {
      "command": "uvx",
      "args": ["mcp-server-apache-airflow"],
      "env": {
        "AIRFLOW_HOST": "https://your-airflow-host",
        "AIRFLOW_USERNAME": "your-username",
        "AIRFLOW_PASSWORD": "your-password"
      }
    }
  }
}

Alternative configuration using uv:

{
  "mcpServers": {
    "mcp-server-apache-airflow": {
      "command": "uv",
      "args": [
        "--directory",
        "/path/to/mcp-server-apache-airflow",
        "run",
        "mcp-server-apache-airflow"
      ],
      "env": {
        "AIRFLOW_HOST": "https://your-airflow-host",
        "AIRFLOW_USERNAME": "your-username",
        "AIRFLOW_PASSWORD": "your-password"
      }
    }
  }
}

Replace /path/to/mcp-server-apache-airflow with the actual path where you've cloned the repository.

Selecting the API groups

You can select the API groups you want to use by setting the --apis flag.

uv run mcp-server-apache-airflow --apis "dag,dagrun"

The default is to use all APIs.

Allowed values are:

  • config
  • connections
  • dag
  • dagrun
  • dagstats
  • dataset
  • eventlog
  • importerror
  • monitoring
  • plugin
  • pool
  • provider
  • taskinstance
  • variable
  • xcom

Manual Execution

You can also run the server manually:

make run

make run accepts following options:

Options:

  • --port: Port to listen on for SSE (default: 8000)
  • --transport: Transport type (stdio/sse, default: stdio)

Or, you could run the sse server directly, which accepts same parameters:

make run-sse

Installing via Smithery

To install Apache Airflow MCP Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @yangkyeongmo/mcp-server-apache-airflow --client claude

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

MIT License

Installation

Claude
Claude
Cursor
Cursor
Windsurf
Windsurf
Cline
Cline
Witsy
Witsy
Spin AI
Spin AI
Use the following variables when running the server locally:

MCPLink

Seamless access to top MCP servers powering the future of AI integration.

© 2025 MCPLink. All rights reserved.
discordgithubdiscord